Synthesis of New 4-Aminoquinolines and Evaluation of Their In Vitro Activity against Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum
نویسندگان
چکیده
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.
منابع مشابه
Synthesis and study of effects of new 4-chloro – amodiaquine analogues against two resistant and sensitive forms to chloroquine Plasmodium Falciparum, in vitro
Background: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern of the developing countries.This resistance has prompted a re-examination of the pharmacology of alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is a 4-aminoquinoline antimalarial which is effective against many chloroquine-resistant strains o...
متن کاملساخت آنالوگهای جدید 4- فلوروآمودیاکین و بررسی اثرات ضد مالاریایی دارو علیه سویههای حساس و مقاوم به کلروکین پلاسمودیوم فالسیپاروم
Background and Objective: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern in the developing countries. This problem has prompted investigators for finding alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is an antimalarial which is effective against many chloroquine-resistant strains of P. falciparum. H...
متن کاملAntiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root
Objective:Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. Materials and Methods: The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressiv...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملSynthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides.
A series of 4-aminoquinolinyl-chalcone amides 11-19 were synthesized through condensation of carboxylic acid-functionalized chalcone with aminoquinolines, using 1,1'-carbonyldiimidazole as coupling agent. These compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (W2) strains of Plasmodium falciparum. Their cytotoxicity towards the WI-38 cell line of normal ...
متن کامل